What is 5G? The business guide to next-generation wireless technology

5g Network Images, Stock Photos & Vectors | Shutterstock


The most important promise made by the proprietors of 5G wireless technology — the telecommunications service providers, the transmission equipment makers, the antenna manufacturers, and even the server manufacturers — is this: Once all of 5G’s components are fully deployed and operational, you will not need any kind of wire or cable to deliver communications or even entertainment service to your mobile device, to any of your fixed devices (HDTV, security system, smart appliances), or to your automobile. If everything works, 5G would be the optimum solution to the classic “last mile” problem: Delivering complete digital connectivity from the tip of the carrier network to the customer, without drilling another hole through the wall.

  • Converged service could lead to unified carriers. In much of the continental US, a consumer’s broadband internet provider also has been her cable TV provider. And that relationship is protected by municipally-regulated monopolies. 5G wireless aims to level the playing field here, placing AT&T, Verizon, and a combined T-Mobile/Sprint in competition against Comcast and Charter Communications, both for broadband internet and “cable” television.
  • Small cell infrastructure could remake landscapes. To reduce costs for 5G operators, 5G allows for smaller transmitters that consume lower power, but that cover much smaller service areas than typical 4G towers. A carrier will need more of them — by one estimate, four hundred times more towers than are currently deployed, though conceivably better integrated with the landscape. The expectation is that a 5G small cell could become as common a feature in urban areas as lampposts and graffiti.
  • The global technology economy could be reconstructed. Suddenly Scandinavia, home of Finland’s Nokia and Sweden’s Ericsson, becomes a world power center for telecommunications. And China, whose state-owned China Mobile and state-supported Huawei are jointly responsible for catalyzing 5G architecture, now has one of the most valuable bargaining chips for superpower status it has ever had.

Once complete, the 5G transition plan would constitute an overhaul of communications infrastructure unlike any other in history. Imagine if, at the close of the 19th century, the telegraph industry had come together in a joint decision to implement a staged transition to fax. That’s essentially the scale of the shift from 4G to 5G. The real reason for this shift is not so much to get faster as to make the wireless industry sustainable over the long term, as the 4G transmission scheme is approaching unsustainability faster than the industry experts predicted.



The revolution, like all others, will be subsidized. The initial costs of these 5G infrastructure improvements may be tremendous, and consumers have already demonstrated their intolerance for rate hikes. So to recover those costs, telcos will need to offer new classes of service to new customer segments, for which 5G has made provisions. Customers have to believe 5G wireless is capable of accomplishing feats that were impossible for 4G.

  • Driverless automobiles. For a world in danger of spiraling downwards towards losing one million of its species beginning in 2030, you might think the goal of eliminating drivers from moving vehicles would be somewhat lower on the list. But the autonomous vehicle (AV) use case does expose one of the critical necessities of modern wireless infrastructure:  It needs to connect people in motion with the computers they may be relying upon to save lives, with near-zero latency.
    • Virtual reality (VR) and augmented reality (AR). For a cloud-based server to provide a believable, real-time sensory environment to a wireless user, as mobile processor maker Qualcomm asserted in a recent presentation, the connection between that server and its user may need to supply as much as 5 gigabits per second of bandwidth. In addition, the compute-intensive nature of an AR workload may actually mandate that such workloads be directed to servers stationed closer to their users, in systems that are relatively unencumbered by similar workloads being processed for other users. In other words, AR and VR may be better suited to small cell deployments anyway.
    • Cloud computing. The internet is not just the conduit for content, but the facilitator of connectivity in wide-area networks (WAN). 5G wireless offers the potential for distributing cloud computing services much closer to users than most of Amazon’s, Google’s, or Microsoft’s hyperscale data centers. In so doing, 5G could make telcos into competitors with these cloud providers, particularly for high-intensity, critical workloads. This is the edge computing scenario you may have heard about: Bringing processing power forward, closer to the customer, minimizing latencies caused by distance. If latencies can be eliminated just enough, applications that currently require PCs could be relocated to smaller devices — perhaps even mobile devices that, unto themselves, have less processing power than the average smartphone.
    • internet of Things. In a household with low-latency 5G connectivity, today’s so-called “smart devices” that are essentially smartphone-class computers could be replaced with dumb terminals that get their instructions from nearby edge computing systems. Kitchen appliances, climate control systems, and more importantly, health monitors can all be made easier to produce and easier to control. The role played today by IoT hubs, which some manufacturers are producing today to cooperate alongside Wi-Fi routers, may in the future be played by 5G transmitters in the neighborhood, acting as service hubs for all the households in their coverage areas. In addition, machine-to-machine communications (M2M) enables scenarios where devices such as manufacturing robots can coordinate with one another for construction, assembly, and other tasks, under the collective guidance of an M2M hub at the 5G base station.
    • Healthcare. The availability of low-latency connectivity in rural areas would revolutionize critical care treatment for individuals nationwide. No longer would patients in small towns be forced to upend their lives and relocate to bigger cities, away from the livelihoods they know and love, just to receive the level of care to which they should be entitled. As recent trials in Mississippi are proving, connectivity at 5G levels enables caregivers in rural and remote areas to receive real-time instruction and support from the finest surgeons in the world, wherever they may be located.

    To make the transition feasible in homes and businesses, telcos are looking to move customers into a 5G business track now, even before most true 5G services exist yet. More to the point, they’re laying the “foundations” for technology tracks that can more easily be upgraded to 5G, once those 5G services do become available.

    “It’s not only going to be we humans that are going to be consuming services,” remarked Nick Cadwgan, director of IP mobile networking, speaking with ZDNet. “There’s going to be an awful lot of software consuming services. If you look at this whole thing about massive machine-type communications [mMTC], in the past it’s been primarily the human either talking to a human or, when we have the internet, the human requesting services and experiences from software. Moving forward, we are going to have software as the requester, and that software is going to be talking to software. So the whole dynamic of what services we’re going to have to deliver through our networks, is going to change.”

The 5G Revolution is Coming…Slowly

Click to comment

Leave a Reply

Your email address will not be published. Required fields are marked *

Most Popular

To Top